What is Sketch Recognition? Sketch recognition is the process of identifying and categorizing hand-drawn sketches using deep learning techniques.
Papers and Code
Oct 17, 2024
Abstract:This work proposes a novel method for object co-segmentation, i.e. pixel-level localization of a common object in a set of images, that uses no pixel-level supervision for training. Two pre-trained Vision Transformer (ViT) models are exploited: ImageNet classification-trained ViT, whose features are used to estimate rough object localization through intra-class token relevance, and a self-supervised DINO-ViT for intra-image token relevance. On recent challenging benchmarks, the method achieves state-of-the-art performance among methods trained with the same level of supervision (image labels) while being competitive with methods trained with pixel-level supervision (binary masks). The benefits of the proposed co-segmentation method are further demonstrated in the task of large-scale sketch recognition, that is, the classification of sketches into a wide range of categories. The limited amount of hand-drawn sketch training data is leveraged by exploiting readily available image-level-annotated datasets of natural images containing a large number of classes. To bridge the domain gap, the classifier is trained on a sketch-like proxy domain derived from edges detected on natural images. We show that sketch recognition significantly benefits when the classifier is trained on sketch-like structures extracted from the co-segmented area rather than from the full image. Code: https://github.com/nikosips/CBNC .
* ACCV 2024 Main Paper + Supplementary (Appendix)
Via
Aug 22, 2024
Abstract:The facial sketch synthesis (FSS) model, capable of generating sketch portraits from given facial photographs, holds profound implications across multiple domains, encompassing cross-modal face recognition, entertainment, art, media, among others. However, the production of high-quality sketches remains a formidable task, primarily due to the challenges and flaws associated with three key factors: (1) the scarcity of artist-drawn data, (2) the constraints imposed by limited style types, and (3) the deficiencies of processing input information in existing models. To address these difficulties, we propose a lightweight end-to-end synthesis model that efficiently converts images to corresponding multi-stylized sketches, obviating the necessity for any supplementary inputs (\eg, 3D geometry). In this study, we overcome the issue of data insufficiency by incorporating semi-supervised learning into the training process. Additionally, we employ a feature extraction module and style embeddings to proficiently steer the generative transformer during the iterative prediction of masked image tokens, thus achieving a continuous stylized output that retains facial features accurately in sketches. The extensive experiments demonstrate that our method consistently outperforms previous algorithms across multiple benchmarks, exhibiting a discernible disparity.
Via
Aug 02, 2024
Abstract:Forensic sketch-to-mugshot matching is a challenging task in face recognition, primarily hindered by the scarcity of annotated forensic sketches and the modality gap between sketches and photographs. To address this, we propose CLIP4Sketch, a novel approach that leverages diffusion models to generate a large and diverse set of sketch images, which helps in enhancing the performance of face recognition systems in sketch-to-mugshot matching. Our method utilizes Denoising Diffusion Probabilistic Models (DDPMs) to generate sketches with explicit control over identity and style. We combine CLIP and Adaface embeddings of a reference mugshot, along with textual descriptions of style, as the conditions to the diffusion model. We demonstrate the efficacy of our approach by generating a comprehensive dataset of sketches corresponding to mugshots and training a face recognition model on our synthetic data. Our results show significant improvements in sketch-to-mugshot matching accuracy over training on an existing, limited amount of real face sketch data, validating the potential of diffusion models in enhancing the performance of face recognition systems across modalities. We also compare our dataset with datasets generated using GAN-based methods to show its superiority.
Via
Aug 09, 2024
Abstract:Zero-shot image recognition (ZSIR) aims at empowering models to recognize and reason in unseen domains via learning generalized knowledge from limited data in the seen domain. The gist for ZSIR is to execute element-wise representation and reasoning from the input visual space to the target semantic space, which is a bottom-up modeling paradigm inspired by the process by which humans observe the world, i.e., capturing new concepts by learning and combining the basic components or shared characteristics. In recent years, element-wise learning techniques have seen significant progress in ZSIR as well as widespread application. However, to the best of our knowledge, there remains a lack of a systematic overview of this topic. To enrich the literature and provide a sound basis for its future development, this paper presents a broad review of recent advances in element-wise ZSIR. Concretely, we first attempt to integrate the three basic ZSIR tasks of object recognition, compositional recognition, and foundation model-based open-world recognition into a unified element-wise perspective and provide a detailed taxonomy and analysis of the main research approaches. Then, we collect and summarize some key information and benchmarks, such as detailed technical implementations and common datasets. Finally, we sketch out the wide range of its related applications, discuss vital challenges, and suggest potential future directions.
* 24 pages, 7 figures
Via
Jul 08, 2024
Abstract:Quantum machine learning (QML) investigates how quantum phenomena can be exploited in order to learn data in an alternative way, \textit{e.g.} by means of a quantum computer. While recent results evidence that QML models can potentially surpass their classical counterparts' performance in specific tasks, quantum technology hardware is still unready to reach quantum advantage in tasks of significant relevance to the broad scope of the computer science community. Recent advances indicate that hybrid classical-quantum models can readily attain competitive performances at low architecture complexities. Such investigations are often carried out for image-processing tasks, and are notably constrained to modelling \textit{raster images}, represented as a grid of two-dimensional pixels. Here, we introduce vector-based representation of sketch drawings as a test-bed for QML models. Such a lower-dimensional data structure results handful to benchmark model's performance, particularly in current transition times, where classical simulations of quantum circuits are naturally limited in the number of qubits, and quantum hardware is not readily available to perform large-scale experiments. We report some encouraging results for primitive hybrid classical-quantum architectures, in a canonical sketch recognition problem.
Via
May 06, 2024
Abstract:We present SketchGPT, a flexible framework that employs a sequence-to-sequence autoregressive model for sketch generation, and completion, and an interpretation case study for sketch recognition. By mapping complex sketches into simplified sequences of abstract primitives, our approach significantly streamlines the input for autoregressive modeling. SketchGPT leverages the next token prediction objective strategy to understand sketch patterns, facilitating the creation and completion of drawings and also categorizing them accurately. This proposed sketch representation strategy aids in overcoming existing challenges of autoregressive modeling for continuous stroke data, enabling smoother model training and competitive performance. Our findings exhibit SketchGPT's capability to generate a diverse variety of drawings by adding both qualitative and quantitative comparisons with existing state-of-the-art, along with a comprehensive human evaluation study. The code and pretrained models will be released on our official GitHub.
* Accepted in ICDAR 2024
Via
May 06, 2024
Abstract:Cross-modality distillation arises as an important topic for data modalities containing limited knowledge such as depth maps and high-quality sketches. Such techniques are of great importance, especially for memory and privacy-restricted scenarios where labeled training data is generally unavailable. To solve the problem, existing label-free methods leverage a few pairwise unlabeled data to distill the knowledge by aligning features or statistics between the source and target modalities. For instance, one typically aims to minimize the L2 distance or contrastive loss between the learned features of pairs of samples in the source (e.g. image) and the target (e.g. sketch) modalities. However, most algorithms in this domain only focus on the experimental results but lack theoretical insight. To bridge the gap between the theory and practical method of cross-modality distillation, we first formulate a general framework of cross-modality contrastive distillation (CMCD), built upon contrastive learning that leverages both positive and negative correspondence, towards a better distillation of generalizable features. Furthermore, we establish a thorough convergence analysis that reveals that the distance between source and target modalities significantly impacts the test error on downstream tasks within the target modality which is also validated by the empirical results. Extensive experimental results show that our algorithm outperforms existing algorithms consistently by a margin of 2-3\% across diverse modalities and tasks, covering modalities of image, sketch, depth map, and audio and tasks of recognition and segmentation.
Via
May 17, 2024
Abstract:This paper presents a novel approach to the digital signing of electronic documents through the use of a camera-based interaction system, single-finger tracking for sign recognition, and multi commands executing hand gestures. The proposed solution, referred to as "Air Signature," involves writing the signature in front of the camera, rather than relying on traditional methods such as mouse drawing or physically signing on paper and showing it to a web camera. The goal is to develop a state-of-the-art method for detecting and tracking gestures and objects in real-time. The proposed methods include applying existing gesture recognition and object tracking systems, improving accuracy through smoothing and line drawing, and maintaining continuity during fast finger movements. An evaluation of the fingertip detection, sketching, and overall signing process is performed to assess the effectiveness of the proposed solution. The secondary objective of this research is to develop a model that can effectively recognize the unique signature of a user. This type of signature can be verified by neural cores that analyze the movement, speed, and stroke pixels of the signing in real time. The neural cores use machine learning algorithms to match air signatures to the individual's stored signatures, providing a secure and efficient method of verification. Our proposed System does not require sensors or any hardware other than the camera.
Via
Apr 29, 2024
Abstract:Sketch-based image retrieval (SBIR) associates hand-drawn sketches with their corresponding realistic images. In this study, we aim to tackle two major challenges of this task simultaneously: i) zero-shot, dealing with unseen categories, and ii) fine-grained, referring to intra-category instance-level retrieval. Our key innovation lies in the realization that solely addressing this cross-category and fine-grained recognition task from the generalization perspective may be inadequate since the knowledge accumulated from limited seen categories might not be fully valuable or transferable to unseen target categories. Inspired by this, in this work, we propose a dual-modal prompting CLIP (DP-CLIP) network, in which an adaptive prompting strategy is designed. Specifically, to facilitate the adaptation of our DP-CLIP toward unpredictable target categories, we employ a set of images within the target category and the textual category label to respectively construct a set of category-adaptive prompt tokens and channel scales. By integrating the generated guidance, DP-CLIP could gain valuable category-centric insights, efficiently adapting to novel categories and capturing unique discriminative clues for effective retrieval within each target category. With these designs, our DP-CLIP outperforms the state-of-the-art fine-grained zero-shot SBIR method by 7.3% in Acc.@1 on the Sketchy dataset. Meanwhile, in the other two category-level zero-shot SBIR benchmarks, our method also achieves promising performance.
Via
Dec 13, 2023
Abstract:Free-hand sketches are appealing for humans as a universal tool to depict the visual world. Humans can recognize varied sketches of a category easily by identifying the concurrence and layout of the intrinsic semantic components of the category, since humans draw free-hand sketches based a common consensus that which types of semantic components constitute each sketch category. For example, an airplane should at least have a fuselage and wings. Based on this analysis, a semantic component-level memory module is constructed and embedded in the proposed structured sketch recognition network in this paper. The memory keys representing semantic components of each sketch category can be self-learned and enhance the recognition network's explainability. Our proposed networks can deal with different situations of sketch recognition, i.e., with or without semantic components labels of strokes. Experiments on the SPG and SketchIME datasets demonstrate the memory module's flexibility and the recognition network's explainability. The code and data are available at https://github.com/GuangmingZhu/SketchESC.
* The paper has been accepted by AAAI2024
Via